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Rayleigh instability on an axisymmetric viscous film around a vertical fibre produces
localized wave structures (pulses) on a flat substrate film that can grow by an order
of magnitude to form large capillary drops. We show that this drop formation
process is driven by a unique mechanism in the form of an ever-growing pulse
which leaves behind a trailing film thinner than the one it advances into. In addition
to accumulating liquid from the film, the growing pulse also captures smaller and
slower pulses in coalescence cascades. We construct this supercritical growing pulse
by matched asymptotics and show that it will eventually evolve into a capillary drop
if the local film thickness h is larger than hc = 1.68R3H−2 where R is the fibre radius
and H the capillary length. We also show that subcritical pulses with h < hc will
equilibrate into stationary pulses that do not grow or coalesce readily to form drops.

1. Introduction
A unique hydrodynamic instability, about which our understanding has advanced

beyond linear theory for wave inception to strongly nonlinear largetime dynamics,
is the Rayleigh instability for an annular film on a vertical fibre. If the thickness of
the film is small compared to the fibre radius, a leading-order long-wave evolution
equation can be derived to replace the far more complex equations of motion
(Trifonov 1992; Frenkel 1992). Theoretical and numerical analyses of this equation
(Kalliadasis & Chang 1994a; Kerchman & Frenkel 1994) have focused on a curious
experimental observation by Quere (1990) on the large-time asymptotic dynamics of
this instability. Quere observes that, if the initial film thickness h0 exceeds a critical
value, small-amplitude waves on the film around a thin fibre can form large capillary
drops of the dimension of the capillary length H = (σ/ρg)1/2 which are at least one
order of magnitude larger than the former waves.

Kalliadasis & Chang (1994a) have constructed lone stationary pulses that travel
steadily at constant speeds on a substrate of thickness h. They correspond to equi-
librium states that isolated pulses can evolve into. They find that such equilibrium
pulses can only exist for h less than

hc = 1.68R3/H2, (1)

where R is the fibre radius.
Both Kerchman & Frenkel (1994) and Kalliadasis & Chang (1994a) have carried

out simulations on an extended domain with random initial conditions on an initial
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flat film of thickness h0. The wave dynamics are also observed to be fundamentally
different depending on the relative magnitude of h0 and hc. In both cases, the
non-stationary, small-amplitude waves at inception evolve into well-separated pulses
on a thin substrate film. This pulse formation mechanism is not understood but
one scenario has been analysed by Chang et al. (1997). Once formed, however, the
dynamics of each pulse seem to be determined only by the local substrate thickness
h. A subcritical pulse (h < hc) would equilibrate into one of the stationary pulses
constructed by Kalliadasis & Chang. This equilibration can involve collecting fluid
from the substrate or draining fluid from the pulse but the amplitude and speed of
an isolate pulsed would eventually become stationary. The pulses may continue to
interact weakly with their neighbours and adjust their spacing. However, extensive
simulations show that coalescence rarely occurs after the subcritical pulses are formed.
In the absence of coalescence and individual pulse growth, these subcritical pulses do
not grow into drops.

This scenario is drammatically different for supercritical pulses with h > hc. These
pulses grow individually by collecting fluid from the substrate. Moreover, their growth
rate is very different such that the larger pulses are much faster than the smaller ones.
As a result, a large pulse eventually overtakes and captures its smaller and slower
front neighbour in a coalescence event. The former pulse gains more fluid in the
process and becomes even larger and faster. An entire train of smaller pulses can
then be captured successively in a coalescence cascade by a trailing large pulse.
This large pulse grows with each coalescence and continues to collect fluid from the
substrate between coalescence events. Although the simulations cannot be carried out
indefinitely and the model equation breaks down eventually when the growing pulses
become too large, this combination of coalescence and individual growth is expected
to drive the large supercritical pulses into drops.

We explore the distinctively different dynamics of subcritical and supercritical
pulses here. In § 2, we carry out additional coalescence simulations to focus on the
importance of continual fluid accumulation from the substrate film by the driving
pulse. We then demonstrate in § 3 that such collection cannot be sustained under
subcritical conditions by showing that isolated subcritical pulses will evolve into the
stable stationary pulses of Kaliadasis & Chang. The spectral stability theory for the
stationary pulses also allows us to determine their equilibration rate and quantify
the reluctance of subcritical pulses to coalesce. We construct an asymptotic state for
a supercritical pulse in § 4 that grows in a rapid self-similar (t∗ − t)−2 manner. This
finite-time blow-up growth dynamics fuels the driving pulse in a coalescence cascade.
Although (1) is favourably compared to Quere’s measured critical film thickness in
Kalliadasis & Chang (1994a), the critical h from §§2 and 3 is for the substrate beneath
a developed pulse while Quere only measured the thickness of the initial waveless
film. We reconcile this difference in §5 by estimating substrate drainage.

2. Pulse coalescence dynamics

We shall utilize the leading-order evolution equation derived by Trifonov (1992)
and Frenkel (1992) for (h0/R) << 1:

∂h

∂t
+

∂

∂x

[
δh3

(
∂3h

∂x3
+
∂h

∂x

)
+ 2

3
h3

]
= 0, (2)
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where

δ = (2σh0/3ρ g R
3) = (2H2h0/3R

3)

measures the ratio of curvature-driven flow of the Rayleigh instability to the gravity-
driven mean flow. The film thickness h0 is taken to be that of the initial waveless film
and it has been used to scale the interfacial height. The fibre radius R is used to scale
the axial coordinate x and the characteristic time used is R/U where U = (gh2

0/2ν)
is the interfacial velocity of the film. As a result of the scaling, the thickness of the
initial waveless film is always unity. The critical condition h0 = hc now corresponds
to a critical δ∗ = 1.12. It is sometimes convenient to present the graphics in a frame
moving with speed c and the equation in that frame becomes

∂h

∂t
+

∂

∂x

[
δh3

(
∂3h

∂x3
+
∂h

∂x

)
+ 2

3
h3 − ch

]
= 0. (3)

Typically, c is chosen to be the pulse speed of an equilibrium subcritical pulse at the
particular value of δ. It is hence well-defined only for subcritical values of δ, δ < δ∗.

We have developed a high-order finite-difference scheme similar to the one used
in Chang et al. (1997) for falling film waves. A detailed description of the numerical
method can be found in the references of that paper. For the current problem, (2)
and (3) are integrated in time using 2000 spatial gridpoints. To minimize numerical
error, ‘soft’ boundary conditions with vanishing first and second derivatives are often
used at the two boundaries of large domains instead of periodic boundary conditions
which are used for smaller domains. These soft conditions introduce a filtering effect
on any wave propagating across the boundaries and wave dynamics that reach the
boundaries must hence be ignored. To ensure the pertinent dynamics is captured
before they reach the boundaries, very large domains exceeding 20 pulse widths are
used with the soft boundary conditions. Such large computational domains introduce
excessively high storage requirements, however, and we do not record the computed
result for every time step. The graphical outputs often show some fluctuations due
to this insufficient reporting of the computed result – they are not due to numerical
error.

In figure 1, we depict the simulated interfacial profiles from (3) in a periodic
domain of length 20π beginning with a small-amplitude (< 10−3), zero-mean, random
disturbance to h0 = 1 at the supercritical condition of δ = 3. As is evident, the
profiles evolve through the linear filtering stage and heavily modulated sinuous waves
are for roughly the wavelength λ of the fastest-growing mode from linear theory,
λ = 2

√
2π. The modulation annihilates certain wave peaks at this stage to yield about

six distinct wave crests. These fluctuating crests seem to phase lock and saturate for
some time at about h = 1.2 before they slowly blossom individually into distinct
pulses by t = 10 with h in excess of 2. These pulses possess the signature front dimple
of capillary film flows (Wilson 1982; Wilson & Jones 1983; Hammond 1983). They
are also separated by thin flat substrate films. Although the pulses are similar in
shape, there are variations in their speed, height and separation which are legacies of
the earlier modulations. As seen by comparing figures 1(b) and 1(c), isolated pulses
continue to grow by accumulating fluid from the substrate. Well-packed pulses do not
grow appreciably, presumably because of the limited reservoir of fluid in the substrate
between pulses. The larger pulses travel faster and begin to encroach on the smaller
ones in front. By t = 15, the largest one has coalesced with its front neighbour to
induce a jump in its amplitude.

We follow the amplitude of this large pulse in figure 2(a). Its solitary growth prior
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Figure 1. Simulated coalescence cascade with random initial condition at δ = 3 and
(a) t = 2, (b) 15, (c) 23 and (d) 30.

to the first coalescence is apparent and we see that it successively captures all five
other pulses in due time, the last two in one violent gulp at t = 24, to form a monster
pulse of amplitude 10. We also note that the large pulse either retains its amplitude or
actually grows between coalescence events. The final lone pulse smooths the substrate
and continues to grow, albeit more slowly, by collecting liquid from the substrate, as
is evident from the amplitude growth beyond t = 24 in figure 2(a). Although it is not
evident in figure 2(a), its amplitude eventually saturates at about 15, a full order of
magnitude larger than the initial quasi-saturated waves at t = 5. This monster pulse
stops growing when the substrate thickness reaches a critical value. The saturation
occurs because we use a periodic computation domain with a finite amount of liquid.
In an extended domain, the substrate beneath a supercritical pulse does not thin
appreciably and the practically infinite reservoir of fluid allows the pulse to evolve
into a drop. We shall demonstrate this in a later section.

It is questionable whether the long-wave expansion assumed in deriving (3) remains
valid for the final large structures. We examine this in the Appendix by using a higher-
order evolution equation and show that the drop formation mechanism offered by (3)
remains valid for thin fibres whose radii are much smaller than the capillary length
H .

To demonstrate that the large supercritical pulse continually accumulates fluid from
the substrate film during the coalescence cascade, we track the substrate thickness χ
behind the large pulse as a function of time in figure 2(b). It is clear that χ decreases
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Figure 2. (a) Amplitude and (b) trailing substrate thickness χ of the large driving pulse in figure 1.

monotonically until χδ approaches the critical value δ∗. Since the substrate thins and
its thickness decreases from its initial value of unity to χ, the effective δ for the
growing pulse, based on its own substrate thickness, is not the original δ but δχ.
Figure 2(b) then suggests that the pulse ceases to grow under subcritical conditions
δ < δ∗. We also note that χ has reached its asymptotic value by t = 15 while the
pulse is still growing at t = 25. This suggests that the substrate thickness in front of
the growing pulse is larger than χ and the jump in the substrate thickness across the
pulse fuels the growth.

The scenario is completely different for subcritical conditions δ < δ∗. Extensive
simulations by Kerchman & Frenkel (1994) and Kalliadasis & Chang (1994a) with
random initial conditions have shown that subcritical pulses rarely coalesce. In figure
3, we have placed two subcritical pulses next to each other for δ = 0.8. The front
one is an equilibrium stationary pulse constructed by Kalliadasis & Chang (1994a)
while the back one is larger with an amplitude 1.265 times the equilibrium value. It
is clear that the two pulses interact with each other but there is no coalescence at
the end. The back pulse drains its excess fluid and equilibrates by slowing down to
a stationary pulse in the moving frame of figure 3. The front pulse gains some fluid
during the interaction and moves forward. Although it is not shown in figure 3, the
front pulse will also shed its excess fluid and equilibrate.

While the separation and amplitude variation in figure 3 are typical of the ‘natural’
conditions with random, small-amplitude initial conditions, one can force coalescence
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Figure 3. A subcritical equilibrium pulse at δ = 0.8 followed by a larger pulse with 1.265 the
equilibrium amplitude. The initial separation is ∆x = 10.

of subcritical pulses by using extremely large and unnatural pulses. We place a pulse
twice as large as the stationary in front of a train of equilibrium pulses spaced about
10 units apart. We track the amplitude of the large pulse, which travels much faster
than the equilibrium pulses, as a function of time in figure 4 for the subcritical
conditions of δ = 0.6 and 0.4. As is evident, the coalescence cascade still occurs for
δ = 0.6 even though the large pulse drains a significant amount of its liquid between
coalescence events. As a result, its amplitude actually decreases in time despite the
coalescence cascade. The drainage is so severe for δ = 0.4 that the cascade stops after
the first coalescence event. The large pulse has decayed into an equilibrium one after
the first coalescence event and is unable to capture the next equilibrium pulse.

It is clear from the simulations that coalescence is driven by speed differential
between pulses. For subcritical conditions, coalescence only occurs if there are ex-
cessively large pulses compared to the equilibrium ones. Even then, due to drainage
from the large pulses, their amplitude can decay in time despite the fluid gain dur-
ing coalescence and the coalescence cascade may not be sustainable. In constrast,
drainage is always from the substrate to the pulse under supercritical conditions and
this drainage amplifies the difference between pulses – it promotes coalescence.

3. Equilibrium subcritical pulses and stability
We shall demonstrate in this section that, in the absence of coalescence, a large

non-equilibrium pulse (or any localized structure) will decay towards an equilibrium
pulse under subcritical conditions and we shall estimate the decay rate by quantifying
the fluid drainage rate from the pulse to the substrate. We do so by showing that the
equilibrium pulses are linearly stable with a new spectral theory.
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Figure 4. Amplitude of the large pulse (twice the equilibrium) behind a train of equilibrium pulses
for (a) δ = 0.6 and (b) 0.4.

Consider a single stationary pulse on a substrate of unit thickness (h0 in the
definition of δ is now taken to be the substrate thickness of a single pulse); these
equilibrium pulses are defined by the following equations in a frame moving with
constant speed c, a stationary version of (3):

δh3
s

(
∂3hs

∂x3
+
∂hs

∂x

)
+ 2

3

(
h3
s − 1

)− c(hs − 1) = 0, (4a)

hs(x→ ± ∞) = 1. (4b)

Construction of the stationary pulse then amounts to determining c(δ). Kalliadasis
& Chang (1994a) showed by matched asymptotics that c(δ) blows up to infinity at
the limiting δ value of δ∗ such that equilibrium pulses only exist when δ is less than

δ∗ = 1.12 (5)

which is a dimensionless version of (1). This corresponds to a substrate thickness
thinner than hc of (1). For δ < δ∗, each equilibrium pulse has the distinctive shape
of a large pulse preceded by a deep dimple. As δ increases towards δ∗, the pulse
becomes larger, the speed faster and the dimple curvature more pronounced until all
three approach infinity at δ∗. Near δ∗, the speed c, amplitude hmaxs and area J of the
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δ c J hmaxs λ#

0.1 2.152 0.316 1.095 −0.0137
0.2 2.304 0.634 1.191 −0.0267
0.3 2.521 1.061 1.321 −0.0388
0.4 2.809 1.603 1.488 −0.0496
0.5 3.205 2.314 1.707 −0.0592
0.6 3.781 3.289 2.012 −0.0668
0.7 4.687 4.714 2.458 −0.0738
0.8 6.279 6.997 3.175 −0.1000
0.85 7.606 8.746 3.728 −0.1510
0.9 9.645 11.240 4.516 −0.2510
0.95 13.020 14.990 5.701 −0.5670
1.0 18.900 20.790 7.544 −1.2200

Table 1. Properties of subcritical equilibrium pulses (δ < δ∗) with unit substrate

stationary pulses can be estimated as

c− 2 =
2δ2/3

δ
2/3
∗ − δ2/3

, (6a)

hmaxs − 1 = 0.371(c− 2), (6b)

J =

∫ ∞
−∞

(hs − 1)dx = 1.175(c− 2). (6c)

Correlations (6) represent a slight empirical improvement of the analytical ex-
pressions derived by Kalliadasis & Chang near δ∗ to extend the validity of the
correlations further away from δ∗. We have also obtained the true values by con-
structing the stationary pulses numerically. These values are tabulated in table 1. As
a check of their validity, we note that the decaying pulse in figure 4(b) approaches
the equilibrium height of hmax = 1.5 in table 1 at δ = 0.4. This again supports the
observation that subcritical pulses decay towards the equilibrium pulses constructed
from (4).

We linearize the evolution equation (3) about the pulse solution (4) to yield the
linearized equation for the disturbance u(x, t) = h(x, t)− hs(x):

∂u

∂t
= Lu, (7)

where the linearized operator is

L = − ∂

∂x

[
δh3

s

(
∂3

∂x3
+

∂

∂x

)
·+3δh2

s

(
d3hs

dx3
+

dhs
dx

)
·+(2h2

s − c)·
]
. (8)

We shall restrict ourselves to bounded disturbances. As a result, all disturbances with
finite mass (area), like the excess mass in a pulse, can be expanded in terms of the
eigenfunctions ψ of the eigenvalue problem

Lψ = λψ,
ψ bounded as x→ ± ∞.

}
(9)

There are two kinds of eigenfunctions. Those eigenfunctions ψk that approach zero
at infinite |x| correspond to discrete eigenvalues λk . Since L is an exact differential,
a simple integration of (9) shows that all discrete modes contain no mass, 〈ψk〉 =
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Figure 5. The spectrum of the equilibrium pulse at δ = 1 in the complex λ-plane. The original and
shifted essential spectra for indicated values of a are shown. The discrete eigenvalue is denoted by
a star and the resonance pole an open circle. After the shift, the resonance pole becomes a discrete
eigenvalue and the discrete eigenvalue a resonance pole. The former dominates the decay dynamics.
The neutral eigenvalue, corresponding to translational symmetry, at the origin is not shown.

∫ ∞
−∞ ψk dx = 0. This is a legacy of the gradient-flow form of the evolution equation (3)

due to mass conservation. The eigenfunctions ψ(λ, x) = K(α, x)eiαx which approach
bounded oscillations at the infinities belong to the essential spectrum defined by

λ(α) = iα(c− 2) + α2δ(1− α2) (10)

for α ∈ (0,∞). The reason that (10) is simply the dispersion relationship for a flat
film of unit thickness is because the equilibrium pulse decays into such a film at both
infinities and the oscillations of the eigenfunctions must also be described by the
flat-film dispersion relationship. There is a continuum of such ‘radiation’ modes since
α takes all real values. Construction techniques for both the discrete and essential
spectra are detailed in Chang, Demekhin & Kopelevich (1996) and Chang, Demekhin
& Kalaidin (1998). We simply show a sample spectrum for the present operator in
figure 5. Due to translational invariance, there is always a simple zero eigenvalue λ1

at the origin that corresponds to the eigenfunction ψ0 = dhs/dx (Chang et al. 1996).
(This ever-existing neutral eigenvalue is not shown in the figure.) There is only one
other discrete mode λ2 that we could locate for the entire pulse family. It is always
stable and is marked by an asterisk in figure 5 at the position of −1.463 for δ = 1.

The essential spectrum shown in figure 5 seems to suggest that the stationary
pulses are unstable. In fact, since none of the discrete modes carry mass, the mass
draining from a decaying pulse must be carried by the continuum of the essential
spectrum. Hence, the fact that the essential spectrum contains a band of unstable
modes in the right-hand half of the complex plane seems to suggest a growing
pulse and not a decaying pulse in drainage. Actually, the mass-carrying wavepackets
spanned by the essential spectrum are of finite width and propagate at speeds different
from the pulse. These wavepackets typically grow out of localized disturbances on
substrates away from the pulse. On the flat substrate, the envelope K(α, x) of the
essential eigenfunction approaches constant values and the eigenfunctions approach
Fourier modes. Hence, the expansion coefficients of the essential eigenfunction for a
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wavepacket on the substrate is simply the latter’s Fourier coefficients and the unstable
essential spectrum corresponds to the unstable Fourier modes within a wavepacket
because the substrate is unstable. However, the growth of these unstable modes would
only affect the pulse if the pulse cannot outrun the wavepacket – the pulse speed is
slower than the group velocity. This is clearly not true from the pulse speed (6) and
the substrate dispersion relationship (10). Hence, even if the growing wavepacket is
initially in front of the pulse, it will be convected behind the pulse without affecting
the stability of the pulse. When the wavepacket passes through the pulse, however,
it will temporarily affect the pulse height before the absorbed mass carried by the
wavepacket drains out of the pulse. Alternatively, the mass contained in a large pulse
will drain out as a wavepacket as the pulse equilibrates. The wavepackets that drain
out in both cases will grow on the substrate as the unstable Fourier modes extract
energy from the Rayleigh instability. This growth, however, does not affect the pulse
in front of the wavepacket.

Pego & Weinstein (1994) developed a weighted spectral theory to describe this
convective stability of a pulse and we shall use it below to capture the equilibration
rate towards a stationary pulse. A weighting function is placed on the disturbance
u. This weight decays exponentially from the pulse in the direction of negative x
in the moving frame. It hence suppresses the temporal growth of any wavepacket
behind the pulse. Since localized disturbances in front of the pulse will eventually be
convected behind the pulse, the weight does not introduce additional instability in
front. Instead, it focuses on disturbances close to the pulse. If the pulse is unstable, the
weighted disturbance will grow in time. If the pulse is stable, the weighted disturbance
will decay in time. The drainage rate of excess fluid in a stable equilibrium pulse is
then determined by the decay rate of the weighted disturbance. We hence use the
eax weight of Pego & Weinstein on the disturbance u in (7), v = eaxu, and define a
corresponding eigenvalue problem

Laφ = eaxL(e−axφ) = λφ, (11)

where φ = eaxψ is the weighted eigenfunction that spans the weighted disturbance
v(x, t).

It is clear that the essential spectrum Γa of La is related to that of L in (10) by the
transformation α→ α+ ia:

λa = i(α+ ia)(c− 2) + δ(α+ ia)2[1− (α+ ia)2]. (12)

The net result is that the essential spectrum is shifted to the left in the complex plane.
This is demonstrated in figure 5. The fact that a particular value of a exists that can
shift the entire essential spectrum to the left-hand half-plane implies that the pulse is
convectively stable – the weighted disturbance decays to zero in amplitude (Chang,
Demekhin & Kopelevich 1995). Even though the drained mass will eventually grow
on the trailing substrate, the pulse suffers no long-time perturbation locally. This is
the essence of Pego & Weinstein’s stability theory.

It can be shown (Chang et al. 1996) that, unlike the essential spectrum which
is shifted by the weight, the discrete spectrum of L is also a discrete spectrum of
La – with an important exception. The discrete eigenfunctions ψk of L decay to
zero as |x| → ∞ with an exponential rate determined by the roots α of the spatial
characteristic polynomial

P (α) = λk − λ(α), (13)

where λk is the discrete eigenvalue corresponding to ψ and λ(α) is given by the
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dispersion relationship (10). The roots with positive real part determine the decay
rate as x→ −∞ and ones with negative real parts the rate as x→ ∞. However, one
can, in principle, also construct functions which satisfy Lψ# = λ#ψ# but do not decay
to zero at one infinity. If, for example, there are two roots with negative real parts α1

and α2, ψ# can decay to zero at +∞ with rate α1 but grow exponentially at −∞ with
rate α2. Since the eigenfunctions ψ# of these λ# modes do not decay to zero, they are
not part of the discrete spectrum and are called resonance poles (Pego & Weinstein,
1994). We have found only one real and negative resonance pole (λ# < 0) which is
shown as an open circle in figure 5.

These resonance poles and their eigenfunctions also satisfy the weighted operator
Laφ# = λ#φ# where φ# = ψ#eax but their asymptotic behaviour at x → ±∞ can
now change. Since the essential spectrum Γa for La is defined by λa(α) for α real,
when there is a discrete eigenvalue on the essential spectrum Γa, one of the roots
of the spatial characteristic polynomial (13) is purely imaginary. Consequently, as Γa
is shifted across the resonance pole λ#, the negative root α2 crosses the imaginary
axis and its real part becomes positive. Hence, as Γa is shifted across the resonance
pole, φ# now decays to zero at both infinities and the resonance pole becomes a
discrete eigenvalue of La. Similarly, if Γa is shifted across the discrete eigenvalue λ2,
it becomes a resonance pole of La. The translational zero mode λ1, as shown earlier
by Chang et al. (1996), remains an eigenvalue as Γa passes by due to a hole in the
Riemann surface defined by Γa. Other rules on the exchange between eigenvalues and
resonance poles can be found in that reference. For all equilibrium pulses with δ < δ∗,
we are able to shift Γa such that λ# becomes a discrete eigenvalue of La and λ2 a
resonance pole as seen in figure 5. Hence, λ# is the dominant mode of the weighted
disturbance and it determines the asymptotic decay rate towards equilibrium pulses
– the asymptotic drainage rate. The value of this resonance pole λ# is tabulated in
table 1. It becomes increasingly negative as δ approach δ∗ from below. All equilibrium
pulses are hence stable and all non-equilibrium pulses with a local substrate thinner
than hc are expected to decay into equilibrium pulses if they are not involved in
further coalescence events. The decay rate λ# increases with increasing substrate
thickness.

To verify the decay rate estimated by the dominant resonance pole, we carry out a
sequence of numerical studies with ‘excited’ lone pulses. The initial non-equilibrium
pulse is h(x, t = 0) = 1 + 1.2(hs(x)− 1) in the frame moving at the equilibrium pulse
speed c. This represents an added mass 20% of that carried by the equilibrium pulse.
The drainage rate and the decay rate of the maxiumum pulse height hmax towards the
equilibrium value should both be λ# at large time, hmax − hmaxs ∼ 0.2(hmaxs − 1)eλ#t. We
hence track η(t) = t−1 ln

[
hmax(t)− hmaxs /0.2(hmaxs − 1)

]
as the excited pulse decays. As

seen in figure 6(a), η(t) approaches a constant negative asymptotic value for δ < δ∗,
indicating an exponential decay towards the equilibrium pulse. That large pulses
decay rapidly towards equilibrium pulses under subcritical conditions explains why
they do not evolve into drops. They cannot grow individually beyond the equilibrium
pulse.

For δ < 0.8, the asymptotic value of η is in excellent agreement with the resonance
pole λ# as seen in figure 6(b). For 0.8 < δ < δ∗, however, oscillations are observed
in η(t) which become more pronounced as δ approaches δ∗. Some oscillations are
evident in the δ = 0.9 curve in figure 6(a). There seems to be an apparent equilibration
of η(t) as well but this asymptotic value deviates from the resonance pole λ#. The
cause of the deviations of the resonance pole theory from the numerical results near
δ∗ is not at present understood.
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Figure 6. (a) The decay rate η(t) from numerical simulation of how an ‘excited’ pulse with 20%
added mass decays towards the equilibrium pulse for δ < 0.9. (b) Comparison of the asymptotic
decay rate η(∞) (asterisks) to the theoretical curve from the resonance poles.

4. Growth dynamics of supercritical pulses
When the local substrate thickness exceeds hc, the corresponding δ is larger than δ∗

of (5) and no stationary pulses exist. As a result, a local large structure cannot decay
and approach an equilibrium pulse. To study its evolution towards a new asymptotic
state, we place a large pulse of arbitrary shape on a unit substrate at δ = 1.5 in figure
7. Soft boundary conditions are used instead of periodic boundary conditions for
this large domain to ensure that a sufficiently large amount of liquid is available to
fuel growth. A transient adjustment ensues over about 20 units of time. During this
transient period, fluid is drained to the back of the pulse as it attempts to reach a non-
existing equilibrium shape. It soon finds that a quasi-equilibrium position is possible
only if the thickness of the back substrate layer, denoted χ(t) for convenience here, is
smaller than the unit thickness in front. Due to this jump in substrate thickness across
the pulse, the flow entering the pulse is larger than the exit value in the frame moving
with the pulse and the pulse grows. The stationary equilibrium pulses for δ < δ∗
are hence replaced by growing pulses as the asymptotic states of localized structures
for supercritical conditions, δ > δ∗. This growth by collecting liquid from the front
substrate is a slow process compared to the local adjustment time for the interface. As
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Figure 7. The transient for the formation of a growing pulse when a large pulse is placed on a unit
substrate for δ = 1.5. The snapshots are taken at t =2, 5, 10, and 20 (a–d). A quasi-steady jump in
the substrate thickness is clearly evident by t = 20 after the transient wave packets convect away.

a result, the pulse and the inner regions connecting the pulse to the substrates remain
quasi-static. The matched asymptotic analysis of Kalliadasis & Chang for stationary
pulses can then be extended below to study this asymptotically growing pulse with a
unique self-growth mechanism.

We shall divide the slowly-growing pulse into three regions and utilize matched
asymptotics. The hydrostatic outer region at the peak of the growing pulse is expected
to be dominated by azimuthal and axial capillary forces to leading order, with next-
order corrections from gravity. To allow matched asymptotics, the quasi-steady pulse
height must be large compared to the substrate thickness. For such large pulses, we
expect the quasi-steady pulse speed c to also be large. We shall hence use c−1/3 as
the small parameter in the asymptotics. In the quasi-static outer region dominated by
hydrostatics, the x scale is of unit order since the axial and azimuthal curvature terms
hx and hxxx within the parentheses in (3) must balance. However, the pulse height
hmax is large. As such, the curvature near the back of the pulse must be of order hmax.
There are then the back inner region where the pulse meets the substrate layer of
unit-order thickness χ and the front inner region where it meets the unit substrate
thickness. Within both inner regions, one has the dominant Bretherton scaling which
balances axial-curvature-driven flow h3hxxx with shear flow due to translation ch
(Bretherton 1961). As such, the vertical length scale and the horizontal length scale
must have a ratio of hx ∼ O(c1/3). We know, however, from matching curvature with
the outer region that hxx ∼ O(hmax) in the inner region. Since h is of unit order in
both inner regions, we immediately conclude that hmax ∼ O(c2/3) in the outer region
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and x ∼ O(c−1/3) in the inner regions. The dominant balances in all three regions do
not involve the growth term ∂/∂t and this stipulates a relatively long time scale for
slow growth.

To estimate the growth time scale, we integrate (3) from x = −∞ where h = χ to
x = +∞ where h = 1 to yield a global mass balance over the jump

∂

∂t

∫ +∞

−∞
hdx = c(1− χ)− 2

3
(1− χ3)

∼ c(1− χ) (14)

which yields a growth time of O(c−1/3).
With h ∼ O(c2/3), t ∼ O(c−1/3) and x ∼ O(1) in the outer region, the evolution term

∂h/∂t in (3) is of negligible O(c) compared to the dominant O(c8/3), O(c2) and O(c5/3)
terms in (3). In fact, if we resolve the outer solution to the following order:

h ∼ c2/3(h0 + c−1/3h1 + c−2/3h2 + · · ·) (15)

the evolution term can be omitted – the outer solution is quasi-stationary.
Integrating (3) from −∞ where h = χ and from +∞ where h = 1, we get

δh3(hxxx + hx)− c(h− χ) + 2
3
(h3 − χ3) +

∂

∂t

∫ x

−∞
hdx = 0, (16a)

δh3(hxxx + hx)− c(h− 1) + 2
3
(h3 − 1) +

∂

∂t

∫ +∞

x

hdx = 0. (16b)

To leading orders of O(c8/3) and O(c2), these two equations are identical,

δh3(hxxx + hx) + 2
3
h3 = O(c5/3). (17)

Substituting (15) into (17), we get

d3h0

dx3
+

dh0

dx
= 0, (18a)

d3h1

dx3
+

dh1

dx
= 0, (18b)

d3h2

dx3
+

dh2

dx
= − 2

3δ
. (18c)

The leading-order equation (18a) is just the long-wave Laplace–Young equation
which possesses a static pulse solution symmetric about x = π:

h0 = A′(t)(1− cos x). (19)

This static solution has a constant width of 2π and makes contact with the substrate
at x = 0 and 2π. With a non-trivial h0, the next-order term h1 vanishes exactly and
the next non-trivial correction to the outer solution is

h2 = − 2

3δ
(x− sin x) + B. (20)

It elevates the substrate thickness to B at x = 0 and 2π and introduces an asymmetric
correction to (19) after the baseline correction. The tilt forward is due to gravitational
steepening in the 2

3
h3 term in (16) and (17). Combining h0 and h2 and expanding

about the contact points at the back x = 0 and at the front z = x−2π = 0, we obtain

h(x→ 0) ∼ A(t)
x2

2
+ B, (21a)
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h(z → 0) ∼ A(t)
z2

2
+

(
B − 4π

3δ

)
, (21b)

where A(t) = A′(t)c2/3.
In the two inner regions, we shall rescale the coordinates with the proper scales,

h ∼ O(1) and x ∼ O(c−1/3). We shall also examine both sides at the same time and
define the Bretherton variables

f = h/χ, ξ =
1

χ

( c
δ

)1/3

x (22)

such that χ = 1 in front and χ 6= 1 in the back. The rescaled (14) and (15) do not
involve the dynamic term (∂/∂t)(·) to the leading three orders – the inner regions are
also quasi-steady due to the small scales. In fact, only the dominant inner solution
is required to match the outer expansion of (21). This the Bretherton equation
(Bretherton 1961)

f
′′′
0 − f0 − 1

f3
0

= 0 (23)

subject to the following boundary conditions at the two inner regions:

f0 → 1 as ξ → ±∞ (24)

with the plus sign corresponding to the front inner region and minus to the back
inner region.

Since the leading-order outer solution (19) is symmetric about x = 0 and makes tan-
gential contact with the negligibly thin substrate, the two leading-order inner solutions
must blow up quadratically to allow matching. In general, the asymptotic solutions
of the Bretherton equation blow up with a vanishing third derivative and hence

f±0 (ξ → ±∞) ∼ α±ξ2 + γ±ξ + β±, (25)

where + denotes the behaviour of the back inner solution as ξ approaches +∞ and
− denotes the asymptotic behaviour of the front inner solution at −∞. There is also a
possibility of a higher-order ξ ln ξ behaviour (Kalliadasis & Chang 1996) that can be
matched with higher-order terms of (15). There is an additional degree of freedom in
choosing the origin of ξ and this is chosen to suppress the linear γ±ξ term to ensure
quadratic blow-up.

For the back inner region near x = 0, integrations by Bretherton (1961) and many
others (see Kalliadasis & Chang 1994a, b, for example) show that there is only a
unique asymptotic behaviour with

α+ = 0.32171, β+ = 2.898. (26)

In the z-coordinate of the outer region, this corresponds to a unique inner asymptote
for the back:

h+ ∼ α+

χ

( c
δ

)2/3

x2 + χβ+, x→ 0. (27)

For the front inner region near z = x−2π = 0, however, a family of inner asymptotes
is now possible. One integrates the corresponding leading-order Bretherton equation
(23) towards ξ = −∞ with the initial condition

f0 ∼ 1 + εe−mξ cos(nξ + θ), (28)

where m = 1/2 and n = 1/
√

2. The parameters m and n correspond to the complex-
conjugate eigenvalue pair for the flat-film dispersion relationship that grow as ξ →
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−∞, namely m > 0. Because it is a complex pair, a phase θ enters the initial condition.
For vanishingly small ε, integration of the Bretherton equation with (28) shows that
a range of θ values yields quadratic asymptotic behaviour for f0 at ξ → −∞. There
is hence a family of (α−, β−) pairs which we shall represent in a functional form

β− = β−(α−). (29)

The computed values of this function will be presented in a more convenient form
later. In any case, a family of inner asymptotes exist for the front:

h− ∼ α−
( c
δ

)2/3

z2 + β−, z → 0. (30)

Baseline and curvature matching of the zeroth- and quadratic-order terms in the
outer solution (21) to the inner asymptotes (27) and (30) yield four equations:

α+

χ

( c
δ

)2/3

=
A

2
, β+χ = B, (31a)

from matching at the back x = 0 and

α−
( c
δ

)2/3

=
A

2
, β− = B − 4π

3δ
, (31b)

from matching at the front x = 2π. They allow us to eliminate the unknown B in the
dominant outer terms and relate A, c, χ, δ and α− by three relationships:

c =

(
A

2α−

)3/2

δ, (32a)

χ = α+/α−, (32b)

β− +
4π

3δ
=
β+α+

α−
, (32c)

where β− is a function α−.
We note that at δ = δ∗ = 1.1201, the solution to (32) is χ = 1, α− = α+ = 0.32171

and β− = −0.8415. This shows that the positive substrate jump vanishes at δ∗ and
reverses for δ < δ∗. Hence, the growing pulse solution exists only beyond δ∗ where
χ is less than unity. We can use (32c) to map the function β−(α−) into the functions
β−(δ) and α−(δ) in figure 8. From these relationships, we obtain how χ and c depend
on δ from (32a) and (32b).

To get the drainage rate, we substitute the leading-order outer solution (19) into
(14) and upon from x = 0 to 2π,

dA

dt
∼ c(1− χ)

2π
= κA3/2 (33)

after substituting (32a), where the growth constant

κ =
δ(1− χ)

2π(2α−)3/2
(34)

is only a function of δ through (32b) and figure 8. This equation can be easily
integrated to yield the blow-up behaviour of the growing pulse

A(t) =
4(

2(A(0))−1/2 − κt)2
. (35)

The computed values of χ(δ) and κ(δ) are shown in figure 9.
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Figure 8. Dependence of α− and β− on δ from matched asymptotics.
Even valves below δ∗ are included.

It is then clear that the self-growth mechanism by using the substrate jump to
collect liquid from the front substrate is only possible for δ > δ∗(κ > 0). The blow-up
time decreases with increasing δ−δ∗ and the blow up evolves in the manner described
by (33) and (35). This blow-up behaviour is supported by the wave tracings of figure
10 where the large-time asymptotics of figure 7 are overlayed. The growth of the
supercritical pulse is dramatically different from the decay of a subcritical pulse in
figure 6(a). The asymptotic blow-up behaviour of (35) and (33) is confirmed in figure
11(a) by carrying out simulations for five values of δ > δ∗. The recorded trailing
substrate thickness χ of the δ = 1.5 case of figure 10 is shown in figure 11(b). The
substrate thins rapidly during the pulse formation transient and slowly approaches the
equilibrium value by t = 10 when the growing pulse is fully developed. The measured
asymptotic χ(δ) and κ(δ) values are favourably compared to the theoretical values of
(34) and (32) in figure 9. Although the theory is developed for the growth dynamics of
positive substrate jumps (χ < 1), it seems to also capture the nonlinear decay dynamics
towards equilibrium for δ between 0.8 and δ∗. This confirms the observation that the
decay dynamics towards these large equilibrium pulses captured in figure 7 are
actually transient nonlinear dynamics driven by finite-amplitude negative substrate
jumps (χ > 1). Unlike the growth dynamics that can proceed indefinitely with a large
reservoir of liquid, the decay dynamics will eventually evolve into exponential decay.
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Figure 9. Measured χ and κ during the shock-driven growth of figures 10 and 11 compared to
theoretical predictions of (32) and (34). The first data point is actually for a decaying pulse but the
theory seems to still work.

The algebraic blow-up behaviour captured by (33) also indicates that the differ-
ential speed of two supercritical pulses blows up in time unless they are exactly the
same amplitude. Hence, a large supercritical pulse will quickly outrun any smaller
supercritical pulses in front. This explains the propensity of supercritical pulses to
coalesce and the robustness of their coalescence cascades seen in figures 1 and 2.

5. Discussion
As is evident in figures 1 and 2(b), the substrate thickness thins monotonically in

a finite periodic domain as liquid drains into the growing pulses. As a result, the
growing pulses see a gradually thinning front substrate. The analysis of § 4 is for
a ‘normalized’ growing pulse with unit substrate thickness. We can renormalize the
thinning substrate by realizing that (3) is invariant to

h→ h/χ, c→ c/χ2, δ → δχ, x→ x, t→ χ2t, (36)

where χ now refers to the thickness of the front substrate. Consequently, the effective
δ for the growing pulse is δχ. For an initially supercritical film, (36) indicates that as
δχ approaches δ∗, the pulse stops growing and front and trailing substrates equilibrate
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Figure 10. Large-time self-similar blow-up of the pulse in figure 7.

to the same equilibrium value of

χeq = δ∗/δ. (37)

This equilibrium substrate is clearly approached in our supercritical simulations of
figures 1 and 2 with random initial conditions. After the coalescence cascade, only
one supercritical pulse remains and it grows until the front substrate that feeds it
thins to χeq , as seen in figure 2(b).

The growth also stops at χ = χeq when there are multiple supercritical pulses
provided they have ceased to interact and coalesce. Kerchman & Frenkel have carried
out extensive supercritical simulations on a periodic domain with random initial
conditions. We reproduce their recorded range of substrate thickness at the end of
their simulations in figure 12. In some cases, there remain multiple pulses at the end
that continue to interact and coalesce. Nevertheless, the upper bound of their band
of equilibrium substrate thickness is closely approximated by (37), as seen in figure
12. The recorded lower equilibrium values suggest there are patches of subcritical
equilibrium pulses on thinner substrates other than the supercritical growing pulses.

It must be recognized that the cessation of pulse growth at χeq is due entirely to
our finite periodic computation domain. The final growing pulse in figure 1 actually
returns around the domain and drains its own substrate. On a real fibre, pulses grow
down the fibre and a growing pulse would sustain the same χ as it moves down.
Whether growing pulses would develop then depends on the substrate thickness hf at
the point where the dimpled pulses first form from the initial non-stationary waves,
as in figure 1(b). This thickness is smaller than the original waveless value h0 due to
drainage into the infant pulses. If hf is smaller than hc, the pulses will equilibrate into
stationary subcritical pulses and if it exceeds hc, growing pulses will form and develop
into drops by coalescence and by collecting liquid from the substrate.
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Figure 11. (a) The self-similar blow-up of the amplitude of a growing pulse sucking liquid from
the front substrate driven by the shock. The growth rate of the pulse amplitude A relative to the
mean thickness dA/dt is shown to be linear with respect to A3/2 during the growth for δ = 1.0,
1.2, 1.3, 1.5, 1.7, and 2 (curves 1 to 6). The first curve breaks the correlation since this pulse actually
decays as δ < δ∗. (b) Approach to an equilibrium trailing substrate thickness for the δ = 1.5 case in
figure 7.

Since hf is smaller than h0, it is clear that if h0 is smaller than hc, drops will
not form. It is not as clear whether drops will form if h0 is above hc. The value
of hf is dependent on the pulse density at formation and hence sensitive to the
initial conditions. Simulations by Kerchman & Frenkel indicate that, for h0 slightly
in excess of hc, growing supercritical pulses or saturated subcritical pulses are equally
likely as the final outcome. It is not until h0 exceeds 3hc that coalescence cascades
driven by growing pulses always form from small-amplitude random initial condi-
tions. This is also seen in figure 1 where hf in figure 1(b) is about 1/3 the initial
thickness. There is hence a band of initial wave thickness, hc < h0 < 3hc, from
which drop formation is possible but can only be induced with large and localized
perturbations which produce a low pulse density at the formation stage. We suspect
that Quere’s experimental condition introduces such perturbations rather than small-
amplitude random noise. This would explain why his measured critical h0 is so close
to hc.
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Figure 12. The predicted equilibrium substrate thickness with random initial noise at slightly
supercritical conditions (δ > δ∗) as a function of δ (solid curve). The dotted curves bound the
measured values from Kerchman & Frenkel’s various simulations. The theory obviously is not
appropriate for δ < δ∗.

Appendix. Regularized equations
The evolution equation (3) is derived from a leading-order lubrication expansion in

ε = h0/R. The dimensionless radial position, scaled with respect to R, is 1 + εh where
h is scaled with respect to h0. The theory requires εh to be small which is questionable
for very large pulses and for equilibrium pulses near δ∗. (The simplification involves
a long-wave expansion of the curvature as well as other terms.) It is hence desirable
to improve the resolution of (3). Unfortunately, there is currently no rigorous way
of extending the lubrication equation to higher orders and one must resort to non-
rigorous ‘regularized’ models that include the full curvature (Gauglitz & Radke 1988;
Ratulowski & Chang 1989; Johnson et al. 1991; Halpern & Grotberg 1993). In the
lens formation problem studied by those workers, the rigorous lubrication equation
of Hammond (1983), analogous to (3), fails to capture the lens formation dynamics
while the ad hoc regularized equation reproduces it faithfully. It is hence believed that
the latter equation provides a reasonable extension of the former. We shall hence also
examine our theory with the ‘regularized’ version of (3),

∂h

∂t
=

1

1 + εh

∂

∂x

(
δh3 ∂K

∂x
− 2

3
h3 − ch

)
,

where K is the full curvature

K = − hxx

(1 + ε2h2
x)

3/2
+

ε−1

(1 + εh)(1 + ε2h2
x)

1/2
.

It is clear that the above equation approaches (3) in the limit of vanishing ε.
The equilibrium pulses of (3) have infinite amplitude as δ approaches δ∗ and it is

here where the lubrication approximation is least accurate. We have constructed the
stationary pulse solutions of the regularized equation and, as seen in figure 13, the
critical δ∗ vanishes for finite ε and stationary pulse solutions exist for all ε. However,
for sufficiently small ε, the amplitude hmax of the pulses is well approximated by (3)
even as it begins to diverge near δ∗. It is only very close to δ∗ and for very large
pulses that hmax of the regularized pulses ceases to diverge and begins to flatten with
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Figure 13. Equilibrium pulse amplitude hmaxs (δ, ε) for the regularized equation.

respect to δ. Such regularized pulses beyond δ∗ are exceedingly large but their εh
remains small – a consequence of the regularization. They can be considered as drops
in practice although they may not have the correct shape due to the uncertainties
involved in the ad hoc regularization

Our transient simulation with the regularized equation indicates that any pulse
growth will eventually be saturated if there is sufficient liquid for the pulses to
absorb to grow into these large regularized pulses. However, the coalescence and
self-similar growth prior to saturation at these large pulses are essentially identical
to the self-similar blow-up of (3) if ε is sufficiently small. For larger values of ε,
however, any growth mechanism beyond δ∗ will be suppressed almost immediately
by these regularized pulses. This suggests that drop formation can only occur for a
sufficiently small ε < 0.01. Returning to the critical condition h0 < hc = 1.68R3H−2,
this constraint implies that the fibre radius must be smaller than one-tenth of the
capillary length H . This is consistent with Quere’s observation: drops do not form
on large fibres. Due to the similarity between the evolution of (3) and the regularized
equation, except near the drop-like regularized waves for δ > δ∗, we shall use (3) for
our studies for a sufficiently small ε. This eliminates one parameter from consideration
and the non-existence of equilibrium pulses beyond δ∗ allows a matched asymptotic
analysis of the self-similar blow-up asymptotics in § 4.

This work is supported by a NASA grant and an NSF grant. We are grateful to a
reviewer for observations which significantly generalized the growth analysis.

REFERENCES

Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.

Chang, H.-C., Demekhin, E. A. & Kalaidin, E. 1998 Generation and suppression of radiation by
solitary pulses SIAM J. Appl. Maths 58, 1246–1277.

Chang, H.-C., Demekhin, E. A. & Kopelevich, D. I. 1995 Stability of a solitary pulse against wave
packet disturbance in an active medium. Phys. Rev. Lett. 75, 1747–1750.

Chang, H.-C., Demekhin, E. A. & Kopelevich, D. I. 1996 Local stability theory of solitary pulses
in an active medium. Physica D 97, 353–375.

Chang, H.-C., Demekhin, E. A., Kopelevich, D. I. & Ye, Y. 1997 Nonlinear wavenumber selection
in gradient-flow systems. Phys. Rev. E 55, 2818–2828.



Drop formation on a coated vertical fibre 255

Frenkel, A. L. 1992 Nonlinear theory of strongly undulating thin films flowing down vertical
cylinders. Europhys. Lett. 18, 583–588.

Gauglitz, P. A. & Radke, C. J. 1988 An extended evolution equation for liquid film breakup in
cylindrical capillaries. Chem Engng Sci. 43, 1457–1465.

Halpern, D. & Grotberg, J. B. 1993 Surfactant effects on fluid-elastic instabilities of liquid-lined
flexible tubes: a model of airway closure. J. Biomed. Engng 115, 271–277.

Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a
thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363–384.

Johnson, M., Kamm, R., Ho, L. W., Shapiro, A. & Pedley, T. J. 1991 The nonlinear growth of
surface-tension driven instabilities of a thin annular film. J. Fluid Mech. 233, 141–156.

Kalliadasis, S. & Chang, H.-C. 1994a Drop formation during coating of vertical fibres. J. Fluid
Mech. 261, 135–168.

Kalliadasis, S. & Chang, H.-C. 1994b Apparent dynamic contact angle of an advancing gas-liquid
meniscus. Phys. Fluids 6, 12–23.

Kalliadasis, S. & Chang, H.-C. 1996 Effects of wettability on spreading dynamics. Ind. Engng
Chem. Fundam. 35, 2860–2874.

Kerchman, V. I. & Frenkel, A. L. 1994 Interactions of coherent structures in a film flow: simulations
of a highly nonlinear evolution equation. Theor. Comput. Fluid Dyn. 6, 235–254.

Pego, R. L. & Weinstein, M. I. 1994 Asymptotic stability of solitary waves. Commun. Math. Phys.
164, 305–350.

Quere, D. 1990 Thin films flowing on vertical fibres. Europhys. Lett. 13, 721–726.

Ratulowski, J. & Chang, H.-C. 1989 Transport of gas bubbles in capillaries. Phys. Fluids A 1,
1642–1655.

Trifonov, Yu. Ya. 1992 Steady-state traveling on the surface of a viscous liquid film falling down
on vertical wires and tubes. AIChE J. 38, 821–834.

Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Engng Maths 16, 209–221.

Wilson, S. D. R. & Jones, A. F. 1983 The entry of a falling film into a pool and the air entrainment
problem. J. Fluid Mech. 128, 219–230.


